On Gromov Hyperbolicity and a Characterization of Real Trees
نویسنده
چکیده
Our argument relies on the well-known fact that Lipschitz maps from Euclidean space into metric spaces have metric derivatives almost everywhere, as proved by Kirchheim [Kir] and Korevaar-Schoen [KoSc] independently. We can combine the main result of [ChNi], a characterization of Gromov hyperbolicity via asymptotic cones [Dru], and Theorem 1.1 to obtain a partial generalization of Chatterji and Niblo’s main result.
منابع مشابه
Characterizations of Metric Trees and Gromov Hyperbolic Spaces
A. In this note we give new characterizations of metric trees and Gromov hyperbolic spaces and generalize recent results of Chatterji and Niblo. Our results have a purely metric character, however, their proofs involve two classical tools from analysis: Stokes’ formula in R2 and a Rademacher type differentiation theorem for Lipschitz maps. This analytic approach can be used to give chara...
متن کاملThe Role of Funnels and Punctures in the Gromov Hyperbolicity of Riemann Surfaces
We prove results on geodesic metric spaces which guarantee that some spaces are not hyperbolic in the Gromov sense. We use these theorems in order to study the hyperbolicity of Riemann surfaces. We obtain a criterion on the genus of a surface which implies non-hyperbolicity. We also include a characterization of the hyperbolicity of a Riemann surface S∗ obtained by deleting a closed set from on...
متن کاملGromov Hyperbolicity in Mycielskian Graphs
Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph GM is hyperbolic and that δ(GM) is comparable to diam(GM). Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs;...
متن کاملFast approximation and exact computation of negative curvature parameters of graphs
In this paper, we study Gromov hyperbolicity and related parameters, that represent how close (locally) a metric space is to a tree from a metric point of view. The study of Gromov hyperbolicity for geodesic metric spaces can be reduced to the study of graph hyperbolicity. Our main contribution in this note is a new characterization of hyperbolicity for graphs (and for complete geodesic metric ...
متن کاملComputing the Gromov hyperbolicity of a discrete metric space
We give exact and approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We observe that computing the Gromov hyperbolicity from a fixed base-point reduces to a (max,min) matrix product. Hence, using the (max,min) matrix product algorithm by Duan and Pettie, the fixed base-point hyperbolicity can be determined in O(n) time. It follows that the Gromo...
متن کامل